+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Continuous monitoring of chemicals in the pharmaceutical industry 

News

Ana Gonzalez and Jose Pozo of the European Photonics Industry Consortium (EPIC) highlight pilot-line opportunities for companies looking to introduce novel Mid-IR sensors in the market.

Chemicals are widely employed across a range of industrial sectors allowing the manufacturing of many of the products that we use daily. From an apple to a car, chemicals can be employed at multiple points the production supply chain. However, their uncontrolled use can risk serious contamination of the environment, food production chain, and healthcare services.

For this reason, the pharmaceutical industry is heavily controlled to ensure the composition of drugs administered to patients. Related chemical processes require strict quality checks to assess the purity, reproducibility, homogeneity, and warn of the presence of contaminants, among other factors. Current evaluation techniques include sampling, transportation to a specialized laboratory, purification of the sample (which is done by skilled personnel), and the final detection using bulky and expensive equipment. Since these actions are time-consuming and costly, and usually the sample is destroyed during the analysis, only a small fraction of the final drug can be analysed. In addition, these analytical tools are bulky and requires optimization and calibration steps, which creates a hurdle for in-line monitoring.

Batch versus continuous manufacturing

In many cases, batch pharmaceutical manufacturing (where all the materials are charged before the start of processing and discharged at the end of processing) is now replaced by cleaner, flexible and more efficient continuous manufacturing, which can avoid off-line delays. In a continuous manufacturing process, material is simultaneously charged and discharged from the process.

Continuous manufacturing has some advantages when comparing with batch manufacturing such as no manual handling is required, increased safety, shorter processing times, more flexible operation and smaller ecological footprint. However, how to warranty that the product has a uniform content and quality within specified limits? Clearly, the answer is related to the implementation of in-line monitoring detection tools in the manufacturing process.

Mid-IR platform

Mid-Infrared (Mid-IR) technology is based on the strong interaction of light with molecular vibrations. Spectroscopic sensing in the Mid-IR wavelength band (3-12 µm) is a powerful analytical tool since the chemicals exhibit their fingerprint region, intense adsorptions that allow unambiguous identifications and quantifications of molecules.

A Mid-IR sensor consists of: i) a laser source, usually Interband Cascade Lasers (ICLs) and Quantum Cascade Lasers (QCL), ii) the passive components (PICs) or free-optics, and iii) a detector (type-II InAs/GaSb superlattice (T2SL), InAsSb and Quantum Cascade Detectors (QCD)). Packaging of the final devices includes the integration of the photonics components and the electronics on the same platform which reduce the size of the sensing system (see image below). Other advantages are a high sensitivity and selectivity, which allows unattended, direct and fast detection of the sample without the requirement of any pretreatment - fundamental requisites to integrate these devices into manufacturing lines.


Photodetectors integrated with electronics.

The increasing attention of the scientific community to Mid-IR sensing has driven several studies demonstrating the enormous potential of the Mid-IR technology (see Ref [1] as an example). Regarding new devices for quality control in pharma, it is helpful to highlight the work recently presented by Li et al. in which they develop a Mid-IR imaging system enabling mapping both active pharmaceutical ingredients and excipients of a drug tablet [2].

MIRPHAB "“ pilot production of Mid-IR sensors
Since the demand for continuous monitoring of chemical production is getting bigger, high growth for spectrometer sensor systems could be expected in future years. A 2016 report indicated that the total market of compact spectrometers will increase from $157M in 2015 to $297M in 2021 [3]. New applications will be fulfilled by using these technologies, and novel devices must be designed and tested, which will require the involvement of new manufacturing players.

The objective of MIRPHAB Pilot Line (Mid-Infrared Photonics Devices Fabrication for Chemical Sensing and Spectroscopic Applications) is to help these new actors in the field of Mid-IR chemical sensing. MIRPHAB is a unique opportunity for small-medium companies that want to introduce novel Mid-IR sensors in the market. MIRPHAB offers a single-access point to the best Mid-IR facilities and expertise in Europe allowing the production of prototypes, and assuring the supply of components for the next generation of chemical sensors based on Mid-IR technologies.

UniversityWafer announces new supply silicon-on-insulator substrates
Paratus deploys Infinera GX Series in superhighway network
The first universal, programmable, multifunctional photonic chip
Intel Ignite launches its European cohort of Spring 2024
A large-scale photonic chiplet to power artificial general intelligence
Aeva creates Automotive Center of Excellence in Germany
Luceda Photonics releases new Test Design Kit
PhotonVentures’ second fundraising round brings total to €75 million
New edition of IPSR-I photonics roadmap published
Luceda Photonics and Alter Technology collaborate on PIC assembly
Alcyon Photonics and Applied Nanotools collaborate on photonics PDK
Aire Networks deploys Infinera’s ICE-X pluggable solution
Nexus participates in airborne hazard detection project
CMC Microsystems and ventureLAB support semiconductors in Canada
Startups selected for Luminate NY accelerator announced
POET and MultiLane partner on transceivers
Rapid Photonics receives €300,000 for lithium niobate PIC production
Lumentum announces improvements to 800ZR+ transceivers
Teramount and GlobalFoundries cooperate on silicon photonics
StarIC teams up with GlobalFoundries on silicon photonics
Marvell demonstrates 200G 3D silicon photonics engine
Alphawave Semi and InnoLight collaborate on linear pluggable optics
NewPhotonics introduces PIC with integrated optical equaliser
Pilot Photonics secures €2.5 million from European Innovation Council
Ranovus collaborates with MediaTek on 6.4T co-packaged optics
Stellantis Ventures invests in SteerLight silicon photonics LiDAR
Semilux launches programme to develop LiDAR for autonomous vehicles
Coherent recognises Tower Semiconductor with Outstanding Innovation and Technology Supplier Award
photonixFAB Consortium now open for first prototyping
Roadmap to drive PIC industry forward unveiled
European quantum experts team up on photonic quantum computing
OpenLight Partners with VLC Photonics to Expand Design and Test Capacity

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: